const fieldName = "theme"; // Your field with linksconst oldPrefix = "Thoughts/01 Themes/";const newPrefix = "Digital Garden/Topics/";const relatedLinks = dv.current()[fieldName];if (Array.isArray(relatedLinks)) { // Map over the links, replace the path, and output only clickable links dv.el("span", relatedLinks .map(link => { if (link && link.path) { let newPath = link.path.startsWith(oldPrefix) ? link.path.replace(oldPrefix, newPrefix) : link.path; return dv.fileLink(newPath); } }) .filter(Boolean).join(", ") // Remove any undefined/null items );} else { dv.el(dv.current().theme);}
Theorem
Suppose k≥1 and δ∈(0,1) and d≥64δ2klogm. Let G∼N(0,d1)⊗d×m. Then
P[G has (k,δ)-RIP]≥1−mk2
(We want to reduce the number of measurements required to ensure we can recover x from only seeing y=Gx)
Proof
Suppose S⊂[m],∣S∣=k and x∈Rm. Define
x(S)∈Rk as the restriction to indices in S
G(S)∈Rd×k be the restriction to columns with indices in S
If ∣∣x∣∣0≤k and all non-zero indices are in S, ie supp(x)⊂S, then we have
Gx=G(S)x(S) and ∣∣x∣∣=∣∣x(S)∣∣
In this case, the (k,δ)RIP is equivalent to requiring that
(for all S⊂[m] with ∣S∣=k) we have
(1−δ)∣∣x(S)∣∣2≤∣∣G(S)x(S)∣∣2≤(1+δ)∣∣x(S)∣∣2
Now, let x^(S):=∣∣x(S)∣∣x(S). Then