conditions for finding a convolutional graph filter

Data

Theorem

Let be a shift operator with eigenvalues , and a graph signal. Let be the GFT.

Suppose

Then there exist coefficients such that , and is a graph convolution

Proof

Recall from above that

We can write this as a linear system:

\begin{bmatrix} \hat{x}{1} & \hat{x}{1} \lambda_{1} & \hat{x}{1}\lambda{1}^2 & \dots & \hat{x}{1}\lambda{1}^{K-1} \ \hat{x}{2} & \hat{x}{2}\lambda_{2} & \hat{x}{2} \lambda{2}^2 & \dots & \hat{x}{2}\lambda{2}^{K-1} \ \vdots & \vdots & & & \vdots \ \hat{x}{n} & \hat{x}{n}\lambda_{n} & \hat{x}{n}\lambda{n}^2 & \dots & \hat{x}{n}\lambda{n}^{K-1} \ \end{bmatrix}\begin{bmatrix} h_{0} \ h_{1} \ \vdots \ h_{K-1} \end{bmatrix}&= \ \text{diag}(\hat{x}) \begin{bmatrix} 1 & \lambda_{1} & \lambda_{1}^2 & \dots & \lambda_{1}^{K-1} \ 1 & \lambda_{2} & \lambda_{2}^2 & \dots & \lambda_{2}^{K-1} \ \vdots & \vdots & & & \vdots \ 1 & \lambda_{n} & \lambda_{n}^2 & \dots & \lambda_{n}^{K-1} \end{bmatrix}\begin{bmatrix} h_{0} \ h_{1} \ \vdots \ h_{K-1} \end{bmatrix} &= \begin{bmatrix} \hat{y}{1} \ \hat{y}{2} \ \vdots \ \hat{y}_{n} \end{bmatrix} \end{aligned}$$

Note that LHS where is a Vandermonde matrix

In order to find a solution to the system (ie, in order for us to find coefficients ), we need

  1. invertible
  2. to yield a solution

In the simplest case where , we need the Vandermonde matrix to have an inverse. Since , is invertible if and only the are distinct.

If or arbitrary , the Rouché-Capelli Theorem states that a linear system with equations in unknowns is consistent (ie has a solution) if and only if the rank of the coefficient matrix and the augmented matrix are the same. In this case, this means

\begin{bmatrix}

1 & \lambda_{1} & \lambda_{1}^2 & \dots & \lambda_{1}^{K-1} \ 1 & \lambda_{2} & \lambda_{2}^2 & \dots & \lambda_{2}^{K-1} \ \vdots & \vdots & & & \vdots \ 1 & \lambda_{n} & \lambda_{n}^2 & \dots & \lambda_{n}^{K-1} \end{bmatrix}\right) &= \text{rank} \left( \left[\begin{array}{ccccc|c} 1 & \lambda_{1} & \lambda_{1}^2 & \dots & \lambda_{1}^{K-1} & \frac{\hat{y}{1}}{\hat{x}{1}} \ 1 & \lambda_{2} & \lambda_{2}^2 & \dots & \lambda_{2}^{K-1} & \frac{\hat{y}{2}}{\hat{x}{2}}\ \vdots & \vdots & & & \vdots & \vdots\ 1 & \lambda_{n} & \lambda_{n}^2 & \dots & \lambda_{n}^{K-1} & \frac{\hat{y}{n}}{\hat{x}{n}} \end{array} \right]\right) \

\impliedby \lambda_{i} \neq \lambda_{j} ;;; \forall i \neq j \end{aligned}$$

Mentions

TABLE
FROM [[]]
 
FLATTEN choice(contains(artist, this.file.link), 1, "") + choice(contains(author, this.file.link), 1, "") + choice(contains(director, this.file.link), 1, "") + choice(contains(source, this.file.link), 1, "") as direct_source
 
WHERE !direct_source