cauchy-schwarz theorem

[[concept]]

Topics

const fieldName = "theme"; // Your field with links
const oldPrefix = "Thoughts/01 Themes/";
const newPrefix = "Digital Garden/Topics/";
 
const relatedLinks = dv.current()[fieldName];
 
if (Array.isArray(relatedLinks)) {
    // Map over the links, replace the path, and output only clickable links
    dv.el("span",
        relatedLinks
            .map(link => {
                if (link && link.path) {
                    let newPath = link.path.startsWith(oldPrefix)
                        ? link.path.replace(oldPrefix, newPrefix)
                        : link.path;
                    return dv.fileLink(newPath);
                }
            })
            .filter(Boolean).join(", ") 
	// Remove any undefined/null items
    );
} else {
    dv.el(dv.current().theme);
}
 
 

Cauchy-Schwarz Theorem

Let be an inner product space over . Then for all we have Or equivalently, if working with a norm induced by an inner product,

) For any it is true that and

(here we prove for

0 &\leq \langle te^{i\theta} + y, te^{i\theta}x,y\rangle \\ &= t^2 e^{i\theta}\overline{e^{i\theta}} \langle x,x \rangle + t e^{i\theta} \langle x,y \rangle + te^{i\theta} \langle y, x \rangle + \langle y, y \rangle \\ &= t^2 \langle x,x \rangle + 2 t Re[e^{i\theta} \langle x,y \rangle] + \langle y, y \rangle \\ \text{choose }\theta \text{ s.t. } Re[e^{i\theta} \langle x,y \rangle] &= \lvert \langle x, y \rangle \rvert \\ &= t^2 \langle x,x \rangle + 2 t \lvert \langle x, y \rangle \rvert + \langle y, y \rangle \\ & \geq 0 \;\;\;\forall t \in \mathbb{R} \end{aligned}$$ And this is a quadratic in $\mathbb{R}$! So the discriminant must be negative, that is $$[2\lvert \langle x, y \rangle \rvert]^2 - 4[\langle x,x \rangle \langle y,y \rangle] \leq 0$$ $$\implies \lvert \langle x, y \rangle \rvert^2 \leq \langle x,x \rangle \langle y,y \rangle$$

References

References

See Also

Mentions

Mentions

const modules = await cJS()
 
const COLUMNS = [  
	{ id: "Name", value: page => page.$link },  
	{ id: "Last Modified", value: page => modules.dateTime.getLastMod(page) },
];  
  
return function View() {  
	const current = dc.useCurrentFile();
// Selecting `#game` pages, for example. 
	let queryString = `@page and linksto(${current.$link})`;
	let pages = dc.useQuery(queryString);
	
	// check types
	pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort()
	
	
	return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>;  
}  
const { dateTime } = await cJS()
 
return function View() {
	const file = dc.useCurrentFile();
	return <p class="dv-modified">Created {dateTime.getCreated(file)}     ֍     Last Modified {dateTime.getLastMod(file)}</p>
}