[[concept]]Topics
const fieldName = "theme"; // Your field with links const oldPrefix = "Thoughts/01 Themes/"; const newPrefix = "Digital Garden/Topics/"; const relatedLinks = dv.current()[fieldName]; if (Array.isArray(relatedLinks)) { // Map over the links, replace the path, and output only clickable links dv.el("span", relatedLinks .map(link => { if (link && link.path) { let newPath = link.path.startsWith(oldPrefix) ? link.path.replace(oldPrefix, newPrefix) : link.path; return dv.fileLink(newPath); } }) .filter(Boolean).join(", ") // Remove any undefined/null items ); } else { dv.el(dv.current().theme); }
Proposition
Suppose is an epsilon packing of . Then
NOTE
The true value is is
Proof
Since is a packing of , we know
\bigcup_{x \in {\cal X}} B^d(x, \varepsilon) &\subseteq B^d(0, 1+\varepsilon) \\ \implies \lvert {\cal X} \rvert \cdot \text{vol}(B^d(0, \varepsilon)) &\leq \text{vol}(B^d(0, 1+\varepsilon)) \\ \implies \lvert {\cal X} \rvert &\leq \frac{\text{vol}(B^d(0, 1+\varepsilon))}{\text{vol}(B^d(0, \varepsilon))} \\ &=\left( \frac{1+\varepsilon}{\varepsilon} \right)^d \end{align}$$ Note in the first line the LHS union is disjoint, which is how we get the second line. $$\tag*{$\blacksquare$}$$
References
References
See Also
Mentions
Mentions
const modules = await cJS() const COLUMNS = [ { id: "Name", value: page => page.$link }, { id: "Last Modified", value: page => modules.dateTime.getLastMod(page) }, ]; return function View() { const current = dc.useCurrentFile(); // Selecting `#game` pages, for example. let queryString = `@page and linksto(${current.$link})`; let pages = dc.useQuery(queryString); // check types pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort() return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>; }
const { dateTime } = await cJS()
return function View() {
const file = dc.useCurrentFile();
return <p class="dv-modified">Created {dateTime.getCreated(file)} ֍ Last Modified {dateTime.getLastMod(file)}</p>
}