Data
subject:: Data Science Methods for Large Scale Graphs parent:: Graph Signals and Graph Signal Processing theme:: math notes
Note
We can approximate heaviside functions using the logistic function as a proxy for our target function
Logistic functions are
As an illustration, we want to find coefficients such that , Here,
\tilde{f}(0) &= \frac{1}{1+e^{\alpha c}} \\ \tilde{f}'(\lambda) = \frac{1}{(1+e^{-\alpha(\lambda-c)})^2}e^{-\alpha(\lambda-c)}+\alpha \implies \tilde{f}'(0) &= \frac{\alpha e^{\alpha c}}{(1+e^{-\alpha c})^2} \\ \tilde{f}''(\lambda)=\frac{-\alpha^2e^{-\alpha(\lambda-c)}}{(1+e^{-\alpha(\lambda-c)})^2} + \frac{2\alpha e^{-2\alpha(\lambda-c)} +\alpha}{(1+e^{-\alpha(\lambda-c)})^3} \\ \implies \tilde{f}''(0) &= \frac{\alpha^2e^{\alpha c}}{(1+e^{-\alpha c})^2}\left(\frac{2e^{\alpha c}}{(1+e^{-\alpha c})} -1\right) \\ \vdots \end{aligned}$$ Then $h_{0}=\tilde{f} (0), h_{1}=\tilde{f}'(0), h_{2}=\frac{\tilde{f}''(0)}{2}$ etc.
Mentions
TABLE
FROM [[]]
FLATTEN choice(contains(artist, this.file.link), 1, "") + choice(contains(author, this.file.link), 1, "") + choice(contains(director, this.file.link), 1, "") + choice(contains(source, this.file.link), 1, "") as direct_source
WHERE !direct_source