Gaussian Process

[[concept]]

Topics

const fieldName = "theme"; // Your field with links
const oldPrefix = "Thoughts/01 Themes/";
const newPrefix = "Digital Garden/Topics/";
 
const relatedLinks = dv.current()[fieldName];
 
if (Array.isArray(relatedLinks)) {
    // Map over the links, replace the path, and output only clickable links
    dv.el("span",
        relatedLinks
            .map(link => {
                if (link && link.path) {
                    let newPath = link.path.startsWith(oldPrefix)
                        ? link.path.replace(oldPrefix, newPrefix)
                        : link.path;
                    return dv.fileLink(newPath);
                }
            })
            .filter(Boolean).join(", ") 
	// Remove any undefined/null items
    );
} else {
    dv.el(dv.current().theme);
}
 
 

Definition

Bayesian Statistics

Gaussian Process

A Gaussian Process is a probability distribution over all such that evaluated at any of points has a multivariate normal distribution.

If , then the gaussian process is known as a Gaussian Random Field

Random Matrix Theory

The joint of gaussian random transform of finite vectors is the characterization of a Gaussian random field, which is a term for a high(er)-dimensional Gaussian Process.

Characterization

Proposition and . Then \text{Law}\left(\begin{bmatrix} Gy_{1} \\ \vdots \\ Gy_{n} \end{bmatrix}\right) = {\cal N}\left(0,\, \begin{bmatrix} \lvert \lvert y_{1} \rvert \rvert ^2 I_{d} & \langle y_{1},y_{2} \rangle I_{d} & \dots & \langle y_{1},y_{n} \rangle I_{d} \\ \langle y_{2} , y_{1} \rangle I_{d} & \lvert \lvert y_{2} \rvert \rvert ^2 I_{d} & \dots & \langle y_{2}, y_{n} \rangle I_{d} \\ \vdots & \vdots & \ddots & \vdots \\ \langle y_{n}, y_{1} \rangle I_{d} & \langle y_{n} , y_{2} \rangle I_{d} & \dots & \lvert \lvert y_{n} \rvert \rvert ^2 I_{d} \end{bmatrix}\right)$$ Or, if we define Yiy_{i}$, then the the covariance matrix is given by

Let

$\text{Cov}\left(\begin{bmatrix} Gy_{1} \ \vdots \ Gy_{n} \end{bmatrix}\right) = Y^{\intercal}Y \otimes I_{d} $$

In particular, this characterization associates the random vector to each fixed vector .

References

References

See Also

Mentions

Mentions

const modules = await cJS()
 
const COLUMNS = [  
	{ id: "Name", value: page => page.$link },  
	{ id: "Last Modified", value: page => modules.dateTime.getLastMod(page) },
];  
  
return function View() {  
	const current = dc.useCurrentFile();
// Selecting `#game` pages, for example. 
	let queryString = `@page and linksto(${current.$link})`;
	let pages = dc.useQuery(queryString);
	
	// check types
	pages = pages.filter( (p) => !modules.typeCheck.checkAll(p, current) ).sort()
	
	
	return <dc.Table columns={COLUMNS} rows={pages} paging={20}/>;  
}  
const { dateTime } = await cJS()
 
return function View() {
	const file = dc.useCurrentFile();
	return <p class="dv-modified">Created {dateTime.getCreated(file)}     ֍     Last Modified {dateTime.getLastMod(file)}</p>
}