[[concept]]Theorem
Let be an -layer GNN. Let be a graph perturbation modulo permutations.
(1) if and all filters are integral Lipschitz, then
(stable to dilation/scaling)
(2) If and all are lipschitz, then (stable to additive perturbations)
(3) If and all are integral Lipschitz, then (stable to relative perturbations)
And GNNs perform better than their constituent filters.
Proof
We begin with some non-restrictive additional assumptions:
- - normalized input at all layers (easy to achieve with non-amplifying , ie )
- activation function/nonlinearity is normalized Lipschitz, ie has a Lipschitz constant of 1.
Let for any of the three perturbation types. Let filters be stable to with
For each layer , we have is a graph perceptron with filter . Then, note that
\lvert \lvert \tilde{x}_{\ell} - x_{\ell} \rvert \rvert &= \lvert \lvert \sigma(H_{\ell }(\tilde{S})\tilde{x}_{\ell-1}) - \sigma(H_{\ell}(S) x_{\ell-1}) \rvert \rvert \\ (\text{since }\sigma=1)\;\;\;\;\;&\leq \lvert \lvert H_{\ell}(\tilde{S}) \tilde{x}_{\ell-1} - H_{\ell}(\tilde{S}) x_{\ell-1}\rvert \rvert \\ &= \lvert \lvert H_{\ell}(\tilde{S}) \tilde{x}_{\ell-1} - H_\ell(\tilde{S})x_{\ell-1} + H_{\ell}(\tilde{S})x_{\ell-1}- H_{\ell}(S) x_{\ell-1} \rvert \rvert \\ &= \lvert \lvert H_{\ell}(\tilde{S}) [\tilde{x}_{\ell-1} - x_{\ell-1}] + [H_{\ell(\tilde{S})} - H_{\ell}(S)] x_{\ell-1}\rvert \rvert \\ (\text{by } \triangle \text{ ineq.}) \;\;\;\;\; &\leq \cancelto{1}{\lvert \lvert H_{\ell}(\tilde{S}) \rvert \rvert} \cdot \lvert \lvert \tilde{x}_{\ell-1} - x_{\ell-1} \rvert \rvert + \cancelto{\leq 1}{\lvert \lvert x_{\ell-1} \rvert \rvert} \cdot \cancelto{\leq c_{h} \epsilon}{\lvert \lvert H_{\ell}(S) - H_{\ell} (\tilde{S})\rvert \rvert } \\ (*) &\leq \lvert \lvert \tilde{x}_{\ell-1} - x_{\ell-1} \rvert \rvert + c_{h}\epsilon \end{aligned}$$ We can apply the same reasoning to get a similar expression for $\lvert \lvert \tilde{x}_{\ell-1} - x_{\ell-1} \rvert \rvert, \lvert \lvert \tilde{x}_{\ell-2} - x_{\ell-2} \rvert \rvert, \dots$ etc for the final expression with $LC$ ^proof
Mentions
TABLE
FROM [[]]
FLATTEN choice(contains(artist, this.file.link), 1, "") + choice(contains(author, this.file.link), 1, "") + choice(contains(director, this.file.link), 1, "") + choice(contains(source, this.file.link), 1, "") as direct_source
WHERE !direct_source